Current Issue : January-March Volume : 2025 Issue Number : 1 Articles : 5 Articles
Background/Objectives: The increase in fungal infections, both systemic and invasive, is a major source of morbidity and mortality, particularly among immunocompromised people such as cancer patients and organ transplant recipients. Because of their strong therapeutic activity and excellent safety profiles, azole antifungals are currently the most extensively used systemic antifungal drugs. Antibacterial properties of various topical antifungals, such as oxiconazole, which features oxime ether functionality, were discovered, indicating an exciting prospect in antimicrobial chemotherapy. Methods: In this study, eleven new oxime ether derivatives with the azole scaffold (5a–k) were synthesized and tested for their antimicrobial effects using the microdilution method to obtain broad-spectrum hits. Results: Although the title compounds showed limited efficacy against Candida species, they proved highly effective against dermatophytes. Compounds 5c and 5h were the most potent derivatives against Trichophyton mentagrophytes and Arthroderma quadrifidum, with minimum inhibitory concentration (MIC) values lower than those of the reference drug, griseofulvin. The MIC of 5c and 5h were 0.491 μg/mL and 0.619 μg/mL against T. mentagrophytes (MIC of griseofulvin: 2.52 μg/mL). The compounds were also tested against Gram-positive and Gramnegative bacteria. Briefly, 5c was the most active against Escherichia coli and Bacillus subtilis, with MIC values much better than that of ciprofloxacin (MIC of 5c = 1.56 μg/mL and 1.23 μg/mL, MIC of ciprofloxacin = 31.49 and 125.99 μg/mL, respectively). Molecular docking suggested a good fit in the active site of fungal lanosterol 14α-demethylase (CYP51) and bacterial FtsZ (Filamenting temperature-sensitive mutant Z) protein. Conclusions: As a result, the title compounds emerged as promising entities with broad antifungal and antibacterial effects, highlighting the utility of oxime ether function in the azole scaffold....
Tetrahydroquinolines are key structures in a variety of natural products with diverse pharmacological utilities and other applications. A series of 3,4-diaryl-5,7-dimethoxy-1,2,3,4-tetrahydroquinolines were synthesized in good yield by reacting 3-aryl-5,7-dimethoxy-2,3-dihydroquinolin-4-ones with different Grignard reagents followed by the dehydration of the intermediate phenolic compounds. Subsequent reduction and deprotection were carried out to achieve the desired tetrahydroquinolone moiety. The lead compound 3c showed low micromolar inhibition of various cancer cell lines. Demethylation under different reaction conditions was also investigated to afford the corresponding monohydroxy analogues....
This paper presents the results of obtaining new cobalt and zinc complexes based on dicyanophenoxy-substituted carboxypthalocyanine. The original method of synthesis and isolation of the compound is shown; its spectroscopic and photophysical characteristics are studied. Studies show the absence of aggregation processes in organic media for solutions of complexes in working concentration ranges. This shows the possibility of the practical application of structures as catalysts. The high catalytic activity of cobalt complexes with dicyanophenoxy-substituted carboxyphthalocyanine ligand in the conversion reaction of sodium diethyldithiocarbamate to disulfiram, which is an active component of drugs for the treatment of alcohol dependence, is determined....
Diffractic acid 1 is a secondary metabolite of depside lichens with antibacterial and insecticidal properties, and anticancer, hepatoprotective and antiviral activities. Novel diffractaic acid derivatives containing a 1,2,4-oxadiazole ring with an aryl substituent have been synthesized by the reaction of diffractaic acid with amidoximes....
Low oral bioavailability is a common feature in most drugs, including antibiotics, due to low solubility in physiological media and inadequate cell permeability, which may limit their efficacy or restrict their administration in a clinical setting. Cefuroxime is usually administered in its prodrug form, cefuroxime axetil. However, its preparation requires further reaction steps and additional metabolic pathways to be converted into its active form. The combination of Active Pharmaceutical Ingredients (APIs) with biocompatible organic molecules as salts is a viable and documented method to improve the solubility and permeability of a drug. Herein, the preparations of five organic salts of cefuroxime as an anion with enhanced physicochemical characteristics have been reported. These were prepared via buffer-assisted neutralization methodology with pyridinium and imidazolium cations in quantitative yields and presented as solids at room temperature. Cell viability studies on 3T3 cells showed that only the cefuroxime salts combined with longer alkyl chain cations possess higher cytotoxicity than the original drug, and while most salts lost in vitro antibacterial activity against E. coli, P. aeruginosa and B. subtilis, one compound, [PyC10Py][CFX]2, retained the activity. Cefuroxime organic salts have a water solubility 8-to-200-times greater than the original drug at 37 ◦C. The most soluble compounds have a very low octanol-water partition, similar to cefuroxime, while more lipophilic salts partition predominantly to the organic phase....
Loading....